
Search: the beginning

Nisheeth

Interdisciplinary area

Search

Information
retrieval

Machine
learning

NLP

Human
factors

Outline

• Components
– Crawling
– Processing
– Indexing
– Retrieval
– Evaluation

• Research areas
– Text processing

• Beyond bag-of-words representations

– Retrieval algorithms
• Context sensitivity
• Personalization
• Diversity and serendipity

– Evaluation methods
• Usability studies
• Real-time tracking

Emphasis areas

• Text processing
– Basic algorithms
– Criteria for model selection
– Data transformations

• Retrieval
– Algorithms
– Ranking schemes
– Research foci

• Evaluation
– Existing methods
– Problems
– Research foci

De-emphasized areas

• Search engine architecture

• Crawling

• Indexing

• Scalability concerns

• Privacy concerns

Resources

• Croft, Metzler & Strohman (ex-Google)

– Search Engines: Information Retrieval in Practice
(pdf on HCC webpage)

• Chapters 1,2,4,6,7,8

• Other research papers and books as we go
along

BOOLEAN SEARCH
The simplest possible search model

The classic search model

Collection

Person

Need

Query

Results

Search

engine

Query

refinement

Boolean search

• Search queries always Boolean formulae
– Later deal with natural language queries

• No uncertainty about corpus membership
– Later deal with document clusters

• Search intent is known
– Later deal with context, personalization

• Great example – Gmail search
• Reading material

– Manning, Raghavan & Schutze, Intro to IR
– Chapter 1
– Available online

Boolean retrieval: Exact match

• The Boolean retrieval model is being able to ask a
query that is a Boolean expression:

– Boolean Queries are queries using AND, OR and NOT
to join query terms

• Views each document as a set of words

• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.

• Many search systems you still use are Boolean:

– Email, library catalog, Mac OS X Spotlight
10

Sec. 1.3

Example document corpus

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

• Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near

countrymen) not feasible
– Ranked retrieval (best documents to return)

• Later lectures

11

Sec. 1.1

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains

word, 0 otherwise
Brutus AND Caesar BUT NOT

Calpurnia

Sec. 1.1

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented)
bitwise AND.

– 110100 AND

– 110111 AND

– 101111 =

– 100100

13

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Answers to query

• Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

 When Antony found Julius Caesar dead,

 He cried almost to roaring; and he wept

 When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

 Capitol; Brutus killed me.

14

Sec. 1.1

Bigger collections

• Consider N = 1 million documents, each with
about 1000 words.

• Avg 6 bytes/word including
spaces/punctuation

– 6GB of data in the documents.

• Say there are M = 500K distinct terms among
these.

15

Sec. 1.1

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.

– matrix is extremely sparse.

• What’s a better representation?

– We only record the 1 positions.

16

Why?

Sec. 1.1

Inverted index
• For each term t, we must store a list of all

documents that contain t.

– Identify each doc by a docID, a document serial
number

• Can we used fixed-size arrays for this?

17

What happens if the word Caesar
is added to document 14?

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Inverted index
• We need variable-size postings lists

– On disk, a continuous run of postings is normal
and best

– In memory, can use linked lists or variable length
arrays

• Some tradeoffs in size/ease of insertion

18

Dictionary Postings

Sorted by docID (more later on why).

Posting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Tokenizer

Token stream Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to

be indexed

Friends, Romans, countrymen.

Sec. 1.2

Initial stages of text processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
– We may wish different forms of a root to match

• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius

Caesar I was killed

i’ the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Sort

• Sort by terms
– And then docID

Core indexing step

Sec. 1.2

Indexer steps: Dictionary & Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Doc. frequency
information is added.

Why frequency?
Will discuss later.

Sec. 1.2

Where do we pay in storage?

24 Pointers

Terms
and

counts IR system
implementation

• How do we
index efficiently?

• How much
storage do we
need?

Sec. 1.2

Lists of
docIDs

Query processing

• How do we process a query?

– Later - what kinds of queries can we process?

25

Sec. 1.3

Query processing: AND

• Consider processing the query:

Brutus AND Caesar

– Locate Brutus in the Dictionary;

• Retrieve its postings.

– Locate Caesar in the Dictionary;

• Retrieve its postings.

– “Merge” the two postings (intersect the document
sets):

26

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

27

34

128 2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Sec. 1.3

Intersecting two postings lists
(a “merge” algorithm)

28

Boolean queries:
More general merges

• Exercise: Adapt the merge for the queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

• Can we still run through the merge in time
O(x+y)? What can we achieve?

29

Sec. 1.3

Merging

What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT

(Antony OR Cleopatra)

• Can we always merge in “linear” time?

– Linear in what?

• Can we do better?

30

Sec. 1.3

Query optimization
• What is the best order for query

processing?

• Consider a query that is an AND of n terms.

• For each of the n terms, get its postings,
then AND them together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar
31

Sec. 1.3

Query optimization example

• Process in order of increasing freq:

– start with smallest set, then keep cutting further.

32

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

More general optimization

• e.g., (madding OR crowd) AND (ignoble OR
strife)

• Get doc. freq.’s for all terms.

• Estimate the size of each OR by the sum of its
doc. freq.’s (conservative).

• Process in increasing order of OR sizes.

33

Sec. 1.3

Quick review

34 Pointers

Terms
and

counts

Sec. 1.2

Lists of
docIDs

Exercise

• Recommend a query
processing order for

• Which two terms should we
process first?

 Term Freq

 eyes 213312

 kaleidoscope 87009

 marmalade 107913

 skies 271658

 tangerine 46653

 trees 316812

35

(tangerine OR trees) AND

(marmalade OR skies) AND

(kaleidoscope OR eyes)

More optimization: skip pointers

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if the index isn’t changing too fast).

Sec. 2.3

Augment postings with skip pointers
(at indexing time)

• Why?

• To skip postings that will not figure in the search
results.

• How?

• Where do we place skip pointers?

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21

31 11

41 128

Sec. 2.3

Query processing with skip pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21

31 11

41 128

Suppose we’ve stepped through the lists until we

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

Where do we place skips?

• Tradeoff:

– More skips shorter skip spans more likely to
skip. But lots of comparisons to skip pointers.

– Fewer skips few pointer comparison, but then
long skip spans few successful skips.

Sec. 2.3

Placing skips

• Simple heuristic: for postings of length L, use L
evenly-spaced skip pointers [Moffat and Zobel 1996]

• This ignores the distribution of query terms.
• Easy if the index is relatively static; harder if L

keeps changing because of updates.

• This definitely used to help; with modern
hardware it may not unless you’re memory-based
[Bahle et al. 2002]

– The I/O cost of loading a bigger postings list can
outweigh the gains from quicker in memory merging!

Sec. 2.3

Phrase queries

• We want to be able to answer queries such as
“stanford university” – as a phrase

• Thus the sentence “I went to university at
Stanford” is not a match.
– The concept of phrase queries has proven easily

understood by users; one of the few “advanced
search” ideas that works

– Many more queries are implicit phrase queries

• For this, it no longer suffices to store only

 <term : docs> entries

Sec. 2.4

Naïve method: Biword indexes

• Index every consecutive pair of terms in the text
as a phrase

• For example the text “Friends, Romans,
Countrymen” would generate the biwords

– friends romans

– romans countrymen

• Each of these biwords is now a dictionary term

• Two-word phrase query-processing is now
immediate.

Sec. 2.4.1

Longer phrase queries

• Longer phrases can be processed by breaking
them down

• stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND palo
alto

Without the docs, we cannot verify that the docs

matching the above Boolean query do contain
the phrase.

Can have false positives!

Sec. 2.4.1

Issues for biword indexes

• False positives, as noted before

• Index blowup due to bigger dictionary

– Infeasible for more than biwords, big even for
them

• Biword indexes are not the standard solution
(for all biwords) but can be part of a
compound strategy

Sec. 2.4.1

Solution 2: Positional indexes

• In the postings, store, for each term the
position(s) in which tokens of it appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Sec. 2.4.2

Positional index example

• For phrase queries, we use a merge
algorithm recursively at the document level

• But we now need to deal with more than
just equality

<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Sec. 2.4.2

Processing a phrase query

• Extract inverted index entries for each distinct
term: to, be, or, not.

• Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

– to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Sec. 2.4.2

Positional index size

• A positional index expands postings storage
substantially

– Even though indices can be compressed

• Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries …
whether used explicitly or implicitly in a
ranking retrieval system.

Sec. 2.4.2

Positional index size

• Need an entry for each occurrence, not just
once per document

• Index size depends on average document size

– Average web page has <1000 terms

– Novels … easily 100,000 terms

• Consider a term with frequency 0.1%

100 1 100,000

1 1 1000

Positional postings Postings Document size

Sec. 2.4.2

Rules of thumb

• A positional index is 2–4 as large as a non-
positional index

• Positional index size 35–50% of volume of
original text

– At this point you can start thinking about
compressing the index itself

Sec. 2.4.2

Proximity queries: example

• Largest commercial (paying subscribers)
legal search service (started 1975; ranking
added 1992; new federated search added
2010)

• Tens of terabytes of data; ~700,000 users

• Majority of users still use boolean queries

• Example query:
– What is the statute of limitations in cases

involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM

• /3 = within 3 words, /S = in same sentence
51

Sec. 1.4

Example: WestLaw

• Another example query:
– Requirements for disabled people to be able to

access a workplace
– disabl! /p access! /s work-site work-place

(employment /3 place

• Note that SPACE is disjunction, not conjunction!
• Long, precise queries; proximity operators;

incrementally developed; not like web search
• Many professional searchers still like Boolean

search
– You know exactly what you are getting

• But that doesn’t mean it actually works better….

Sec. 1.4

Proximity queries

• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

– Again, here, /k means “within k words of”.

• Clearly, positional indexes can be used for
such queries; biword indexes cannot.

• Adapt the linear merge of postings to handle
proximity queries.

• Can you make it work for any value of k?

– This is a little tricky to do correctly and efficiently

Sec. 2.4.2

Combination schemes

• These two approaches can be combined
– For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging positional
postings lists

• Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme
– A typical web query mixture was executed in ¼ of the

time of using just a positional index

– It required 26% more space than having a positional
index alone

Sec. 2.4.3

